
University of Wollongong
Research Online

Faculty of Informatics - Papers Faculty of Informatics

2005

Performance of Java Middleware - Java RMI,
JAXRPC, and CORBA
N. A. B. Gray
University of Wollongong, nabg@uow.edu.au

Research Online is the open access institutional repository for the
University of Wollongong. For further information contact Manager
Repository Services: morgan@uow.edu.au.

Publication Details
This conference paper was originally published as Gray, NAB, Performance of Java Middleware - Java RMI, JAXRPC, and CORBA,
The Sixth Australasian Workshop on Software and System Architectures (AWSA 2005), Brisbane, 29 March 2005. Original
conference information available here

http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/infopapers
http://ro.uow.edu.au/informatics
http://mercury.it.swin.edu.au/ctg/AWSA05/
http://ro.uow.edu.au/
http://ro.uow.edu.au/

Performance of Java Middleware - Java RMI, JAXRPC, and CORBA

Abstract
Developers of distributed Java systems can now choose among Java-RMI, CORBA, and Web-Service
(JAXRPC) middleware technologies. Performance is one factor that has to be considered in choosing the
appropriate technology for a particular application. The results presented in this paper show that the nature of
response data has a greater impact on relative performance than has been allowed for in most previous
studies. Relative performances of the technologies as measured on simple requests and responses are not
representative of the behaviour that can be expected in practical applications.

Keywords
Middleware, Java-RMI, JAXRPC, CORBA, Java systems

Disciplines
Computer Engineering

Publication Details
This conference paper was originally published as Gray, NAB, Performance of Java Middleware - Java RMI,
JAXRPC, and CORBA, The Sixth Australasian Workshop on Software and System Architectures (AWSA
2005), Brisbane, 29 March 2005. Original conference information available here

This conference paper is available at Research Online: http://ro.uow.edu.au/infopapers/676

http://mercury.it.swin.edu.au/ctg/AWSA05/
http://ro.uow.edu.au/infopapers/676

 31

Performance of Java Middleware - Java RMI, JAXRPC, and CORBA
N.A.B. Gray

School of Information Technology & Computer Science,
University of Wollongong

nabg@uow.edu.au
Abstract

Developers of distributed Java systems can now

choose among Java-RMI, CORBA, and Web-Service
(JAXRPC) middleware technologies. Performance is one
factor that has to be considered in choosing the
appropriate technology for a particular application. The
results presented in this paper show that the nature of
response data has a greater impact on relative
performance than has been allowed for in most previous
studies. Relative performances of the technologies as
measured on simple requests and responses are not
representative of the behaviour that can be expected in
practical applications.

1. Introduction

 Distributed object systems, implemented in Java, can
now be created using Java-RMI [1], CORBA [2, 3], and
WebService (JAXRPC) [4, 5] technologies. Java-RMI
and CORBA allow the implementation of sophisticated
server-side architectures, but in many cases only a simple
stateless server is required. WebServices can be adapted
to support stateful services, but are primarily intended for
stateless servers. The discussions in this paper focus on
such stateless servers. A typical application would use
such a server to interrogate or update a database. The
appropriate technology for a specific application will be
determined by a variety of factors including ease of
programming, stability and ease of deployment, and
performance. Published studies of empirical tests of
performance can serve as a guide; this paper identifies a
weakness, relating to network usage, that appears in many
of these earlier studies.
 The alternative technologies are similar with regard to
ease of programming. In all cases, developers start with
an interface that declares the operations that define the
service. This interface will be a Java Remote interface
for Java-RMI (or optionally for WebServices), or an IDL
interface for CORBA, or a WSDL interface [6] for
WebServices. Automatic code generators create client-
side-stub classes, and corresponding server side
“skeletons”. The client-side code that must be written by
the developer is essentially identical for all technologies,
differing only in the few lines needed to obtain a proxy
(stub) object for the server. For the server side, the

developer must define a class that either implements an
interface or extends an auto-generated base-class. This
server implementation class contains the business logic;
its coding is almost identical for all technologies. For
Java-RMI and CORBA, the developer must also create a
simple driver program that instantiates an instance of the
server class, binds it to the low-level object request broker
runtime system, and publishes its identity. In a JAXRPC
WebService, a standard servlet-based framework
performs the equivalent services.
 The auto-generated stubs and skeletons hide the
networking and data-marshalling aspects. CORBA and
Java RMI use communications protocols (IIOP and
JRMP) that directly overlay the TCP/IP layer.
WebServices, and optionally Java RMI, work with the
HTTP protocol for requests and responses. Inevitably,
HTTP-based systems are less efficient than the binary
protocols but they do have advantages when the clients
and servers in a distributed system are separated by
firewalls. Firewalls are typically configured to admit
HTTP traffic, but security administrators are loath to open
up additional ports in firewalls or to install bridging
applications in the firewall as needed to allow
communication to arbitrary ports as used by CORBA and
Java-RMI. The choice of technology for a particular
distributed application will to some degree depend on an
assessment of the additional costs of HTTP-based
mechanisms (both processing cost and increased network
traffic) as compared to their advantages with regard to
firewall configuration. If an HTTP-based approach is
adopted, the relative performances of different HTTP-
based implementations must be assessed.
 Quite apart from considerations of firewalls,
performance may need to be traded against other
deployment and stability issues. JAXRPC WebServices
are deployed in WWW-servers such as Tomcat [7]. Such
servers have persistent configuration data and will
automatically restart all services after a system failure;
systems administrators will be familiar with such servers
and will not require training. CORBA systems typically
have a CORBA-daemon process that restarts actual
servers when needed, and a CosNaming nameserver
process (in Sun’s Java 1.4, these tasks are combined in the
orbd process). While a CORBA system is typically
stable and fairly easy to administer, the technology is
much less likely to be familiar to systems administrators.

 32

Java-RMI has its rmiregistry program that fills a
nameserver role; but this does not use persistent data
defining its servers and cannot restart servers at a system-
wide restart. Each server, or group of activatable servers,
must be reregistered by launching the programs manually
or via a script. In many ways, Java-RMI is the least
resilient of the technologies; its apparent advantage has
always been seen as its higher performance.
 With the choice of technology often being determined
by a trade-off between performance and configuration/
deployment issues, developers need to have a clear
understanding of the factors affecting the performance of
the technologies. The main contribution of this paper is
to present data on comparative performance of these Java
middleware technologies. The work extends a number of
similar previous studies, taking into account some details
of the actual data transfers on the network that have been
inadequately considered. Section 2 of the paper
summarizes previous studies; section 3 reports on the
results from a series of tests, and section 4 presents
concluding remarks.

2. Earlier studies

 Juric et al. [8, 9, 10] have published results for a series
of studies comparing Java-RMI and CORBA. In [8], they
compared Java implementations of RMI and CORBA (the
Visibroker implementation). The performance measures
were based on roundtrip times recorded for invocations of
service operations that returned simple data types or
strings; typically, the time for 200 invocations was
measured. For the simple data types, RMI performed
significantly better than CORBA. However, CORBA
showed better performance when returning large strings;
this was attributed in part to CORBA using 8-bit
characters for strings where Java-RMI was expected to
use 16-bit characters. The later two papers in this series
included measures of the original and optimized versions
of RMI-IIOP.
 Buble et al. [11] have identified problems with a
number of such comparative studies. In particular they
note the need for a “warm-up” period prior to
measurements of latency times for communications. Each
middleware system will involve activities such as priming
of caches, and stabilization of adaptive resource allocation
algorithms; further, Java “just in time” compilation cuts in
at some point. Illustrative results from Buble et al. show
quite dramatic decreases in roundtrip invocation times
after about 1000 invocations, and further decreases after
longer warm-up times. In their example study, some
15,000 requests were needed before round-trip times
stabilized and showed no further decreases. The effect of
warm-up is obviously important for servers that run for
extended periods handling thousands of requests from
various clients. Its importance for clients is less clear.
Most applications have clients that connect for relatively
short periods of time and submit only small numbers of
requests. Comparisons based solely on round-trip times

are probably best done using “warmed-up” clients, though
actual timings in practical cases will be longer.
 In their more recent study, Demarey et al. [12] have
presented extensive results on benchmarking round-trip
latency for various Java middleware platforms. They
have tested numerous Java CORBA implementations,
Java RMI, Java XML systems, and less common systems
such as OpenCCM and Fractal. Their benchmark
involves timing a void ping() operation on the
server. These measurements were made on “warmed up”
systems and incorporated other improvements as
suggested by Buble et al. [11]. In their study, the
ORBacus 4.1 implementation of CORBA actually
outperformed Java-RMI (by about 7%); though most of
the other CORBA versions had considerably inferior
performances (by up to 500%). Their view was that a
well implemented version of GIOP/IIOP could provide
better performance than ad hoc protocols such as Java
RMI's JRMP, and that WebServices platforms incurred
high overheads that would likely preclude their use in
cases where distributed systems would interact strongly.
 The emergence of WebServices as a contender resulted
in initial studies by Elfwing et al. [13] and by Davis and
Parashar [14]. Elfwing et al. compared Web Services to
CORBA, both in Java implementations, finding a
degradation factor of up to 400 in performance. This
performance impact could be reduced by recoding the
java.net libraries to work around problems with
HTTP as used by the WebService. Davis and Parashar
compared several WebService systems (Java, Perl, .Net)
with Java-RMI and CORBA. They noted similar
problems with the behavior of HTTP. Their final
conclusion was that Java-RMI was preferable to the Web
Service systems available at the time of the study. The
poor performance of WebServices in these two studies
was due in large part to their use of the HTTP-1.0
protocol [15]. Every invocation of a remote operation
required the costly construction and teardown of a new
TCP/IP link; delays in the mechanism for closing each
link caused the largest performance impacts. The current
JAXRPC implementations of WebServices use HTTP-1.1
where the “keep-alive” protocol feature permits many
requests to be made once a connection has been
established.
 In more recent work, Juric et al. [16] have compared
Java-RMI, RMI-HTTP tunneling, and JAXRPC
WebService implementations. This study allows some
measure of the impact of a firewall on a system's likely
performance. Their results showed that Java-RMI was
more than 8 times faster than JAXRPC, which was again
more than 3 times as fast as RMI-HTTP tunneling
through a servlet based web server.
 This study extends previous work in just two aspects.
Firstly, an examination of recorded network traffic had
shown anomalies in the relative network performance of
Java-RMI and CORBA implementations when the size of
a response message was changed. Investigation of these
anomalies has exposed a deficiency in Java-RMI's
handling of larger responses; a deficiency that reduces the

 33

generally observed performance advantage of Java-RMI.
Secondly, examination of data traffic had also pointed to
variations in the relative performances of JAXRPC and
RMI-HTTP tunnelling. Again, the relative performances
of the technologies change with the nature of the data
being returned.
 These empirical observations motivated the
performance study reported here. The study examines
firstly the simple case where the invoked server operation
returns a character string of fixed size. For these
examples, the results are consistent with most previous
studies in that Java RMI performs best, RMI-HTTP worst.
However, such simple requests are atypical of actual
remote services. The rest of the study looks at
invocations that return structured data (e.g. a small array
of records such as might be obtained by a SQL select
query on a datatable). With these data, the relative
performance of the different technologies changes and
CORBA proves most effective and WebService
(JAXRPC style) most costly. The change in performance
relates to the way that data are organized into packets for
transmission on the network.

3. Performance investigation

 This study used the Sun Java 1.4.2 reference
implementations throughout. The tests were done on a
system with a 100Mb switched Ethernet connecting a Dell
Optiplex GX260 with a 2GHz CPU and 512Mbyte
memory running Windows XP and a SunBlade 100
workstation running Solaris (tests were run with each
machine in both client and server roles, differences in the
implementation of TCP/IP result in some minor
performance differences when a client creates a
connection to submit only a single request). In their
study, Demarey et al [12] ran both client and server
processes on the same machine to avoid network
perturbations; this configuration proved impractical for
this study as a server system, such as the RMI-HTTP
system with Tomcat/rmiregistry/server, ran at about 80%
CPU utilization in some tests and simultaneous execution
of the client on the same system would have just resulted
in contention amongst processes. Network traffic analysis
was conducted using the Ethereal tool to capture packets.
Tomcat 5 was used as the servlet application server for
the JAXRPC system, and as both the class file server for
Java-RMI and host for the servlet used to enable RMI-
HTTP tunneling. The tests did not involve any actual
firewall; RMI-HTTP tunneling was forced using available
configuration options in Sun’s RMI implementation.
 As Buble et al. [11] have noted, round-trip call times
only become reliable after several thousand operations
have been invoked so as to “warm-up” the systems. A
server will often run for days without being restarted, so
its “warmed-up” performance is appropriate. Clients do
not typically make tens of thousands of requests. After
all, the prototypical WebService example is a “stock
quote” service where the client makes a single request. In
this case, a WebService solution will perform best

because it involves only a single connection to the server
whereas both RMI and CORBA solutions will involve
initial contact with a naming service to find the server
(and RMI has the additional overhead of needing to
contact a web-server to download client stub class files).
Client performance is measured here with programs
where the client connects and then runs a number of
cycles, in each cycle measuring the time for 1000
operation requests. Buble et al. [11] note that the use of
such aggregate times for many invocations loses a lot of
information that could be used to characterize details of
middleware performance, but these aggregates will
suffice when looking for major differences in
performance of different technologies. In this study, it
was observed that the time for the first 1000 invocations
could be twice that of the eventual stabilized time, but in
most cases the times had stabilized after about 3000
invocations.
 Demarey et al. [12] use a simple void ping()
operation in their performance tests. Juric et al. use a
server with an interface such as the following:

public interface IPerformanceTester
 extends java.rmi.Remote {
 int getInt() throws RemoteException;
 ...
 double getDouble() throws ...;
 String getString()
 throws RemoteException;
}

 For this study, three different interfaces were used.
The first server defined a getString() operation; the
effect of string length on performance was an issue. (All
java.lang.String data elements used in this study
were in the default ISO-Latin font.) Performance was
tested with strings of varying sizes in the range 64-8192
characters. HTTP-systems, IIOP systems, and JRMP
(Java-RMI native encoding) have different approaches to
choosing packet size and how to handle continuation
packets when a response is large. The Java-RMI
mechanisms (JRMP) appear to be the least effective;
though they are not too troubled by regular sized
structures such as strings.
 The second server was defined via the following class
and interface:

public class Data2 implements
 java.io.Serializable {
 private long _d1;
 private String[] _d2;
 private double[] _d3;
 // accessor and mutator functions etc
 ...
}

public interface Demo extends Remote {
 public Data2[] f1(String str)
 throws RemoteException;
}

 34

 In this case, the server implementations each generated
an array of Data2 objects as the response to every f1()
invocation. Each Data2 had eight doubles and four
strings whose lengths were varied “randomly” (using
identical random sequences in every test run). A typical
Data2[] was about 900 byes but they could exceed
1Kbyte.
 The final server simulates a system that returns
customer records retrieved from a database. It is defined
in terms of the following classes and interface:

public class Address implements
 java.io.Serializable {
 private long _postcode;
 private String _unit;
 private String _street;
 private String _city;
 private String _state;
 // accessor and mutator functions etc
 ...
}

public class SimpleDate implements
 java.io.Serializable {
 private long _day;
 private String _month;
 private long _year;
 // accessor and mutator functions etc
 ...
}

public class Order implements
 java.io.Serializable {
 private SimpleDate _date;
 private String _productcode;
 private int _number;
 // accessor and mutator functions etc
 ...
}

public class Data3 implements
 java.io.Serializable {
 private String _customer;
 private String _salesrep;
 private Address _address;
 private Order[] _orders;
 // accessor and mutator functions etc
 ...
}
public interface Demo3 extends Remote {
 public Data3[]
 getCustomersForSalesRep(
 String salesrep)
 throws RemoteException;
 public Data3 getCustomerRecord(
 String customer)
 throws RemoteException;
}

 The intent of this example was to explore the impact of
any inefficiency in the SOAP XML encoding of structs

containing structs, or the encoding of arrays of such
structures.

3.1 Regular string data

 Table 1 shows performance data for the
getString() example with varying string sizes. The
data include stabilized time for 1000 invocations, total
data traffic for 10,000 invocations, and total number of
packets. (The times shown are averages of the five lowest
records. There can be slight variations in numbers of
packets and total bytes transferred due to things like
occasional “ping” requests with JRMP or
acknowledgements of groups of packets rather than single
packets; these variations are < 0.1%.)
 These results are consistent with previous studies.
Java-RMI (JRMP) is the most efficient in terms of both
elapsed times and total data transfers. CORBA performs
second best; its relative performance compared with RMI
improves somewhat with larger strings. JAXRPC
performs less well, but is better than RMI-HTTP.
 Each protocol has its own “wire” representation for the
data. All incur overheads that are significant for small
sized responses such as the 64-character strings but
become less marked for long strings as shown by the
ratios of data on the wire to content data.
 RMI’s JRMP protocol simply serializes the objects that
are transferred. In this simple case, the response data
consist of a single string object that is sent with its class
specification and the content character data. If the data
represent an array of objects (or a graph of objects) with
duplicates (e.g. an array of “date” objects with duplicate
string data for day and month names), the serialization
mechanism encodes subsequent occurrences of an object
by back-references rather than by duplicating the data;
this typically results in some data compression. Contrary
to reports in previous studies, RMI’s JRMP does not
necessarily utilize a 16-bit character representation; the
ISO-Latin strings used by the test application are
transferred as 8-bit characters on the wire. The packets
transferred for JRMP comprise those for exchanges with
rmiregistry when finding the service, those needed
to download the client stub class file, a few “ping”
requests and responses, and the RMI “call” and
“response” messages. JRMP has a relatively small
preferred packet size for response data; when the string
length exceeds about 300 bytes, JRMP splits the response
into a first packet and one (or more) continuation packets.
As will be illustrated by the data in the following sections,
it is this approach to handling continuations that can lead
to RMI-JRMP performing less effectively than CORBA-
IIOP.

 35

Technology Length of

string
returned

Packets
(10,000
invocations)

Total bytes
transferred
(10,000 invocations)

“Stabilized” time for
1000 invocations

Ratio data sent /
actual content data

64 20,034 3,374,400 1.29 5.3
512 20,034 7,854,420 1.50 1.5

CORBA

4096 80,032 48,434,269 2.86 1.2
64 20,100 2,412,400 0.77 3.8

512 40,130 8,404,000 1.19 1.6
RMI-JRMP

4096 100,129 48,345,000 2.04 1.2
64 40,965 7,948,300 11.42 12.4

512 40,968 12,438,400 11.85 2.4
RMI-HTTP

4096 61,198 49,390500 13.57 1.2
64 100,816 19,868,900 4.84 31.0

512 100,816 24,348,800 5.04 4.8
JAXRPC

4096 130,869 61,830,000 7.03 1.5

Table 1 Performance of technologies for varying string length.

 CORBA-IIOP generally performs best with regard to
the number of packets transmitted. The IIOP data traffic
comprises a few initial exchanges with a CosNaming
nameservice to locate the desired service, and then the
CORBA request and response packages. IIOP has a 1024
byte packet limit; larger responses require additional
continuation packets. The IIOP overhead on a packet is
higher than that for RMI-JRMP, but this extra overhead is
offset by the reduction in the number of packets for large
responses.
 The RMI-HTTP has essentially the same data transfers
as RMI-JRMP, but with the data being carried in HTTP
text packets. The HTTP exchanges involve separate
header and content packets for both requests and
responses. Response data are buffered in the server and
sent in large response and continuation packets (~1500
bytes). Apart from very short strings, the total data sent
are only a little greater than for RMI-JRMP and actual
packet use can be less because of the larger data and
continuation response packets. Processing costs on the
server are high, and the response times here are the
poorest. (The system configuration used had a Tomcat
WWW server hosting a servlet that acted as an
intermediary to separate rmiregistry and server
processes “behind the firewall”; every request and
response involves additional inter-process
communications between Tomcat and the application
process.)
 The JAXRPC solution is the most costly in terms of
total data transfer and packets. Each request requires a
header and a content packet; each response has a HTTP
header packet, a SOAP envelope packet, one or more
content packets with the rpc-encoded SOAP response
XML data, and a final terminator packet. For this simple
example, the extra data sent are those needed to encode
the SOAP envelope; the actual excess data for the XML
markup consist of a simple tag specifying the field name
and type, xsd:string, of the response string. These
overheads are naturally most notable for short strings.

Although sending more packets and more total data than
the RMI-HTTP solution, JAXRPC exhibits better
response times. In the JAXRPC solution, the actual
server object is instantiated in the same JVM in the same
Tomcat process as the standard servlet that handles
HTTP-communications and XML-encoding and
decoding; there are no extra inter-process communication
costs on the server side.

3.2 An array of simple “structs”

Table 2 shows performance data for the example where
the server returns a small array of simple “structs” each
containing integer, double, and string fields.
 The relative performances of the different technologies
now change quite radically. CORBA-IIOP shows the best
performance in terms of number of packets, total data
transfer, and round-trip times. RMI-HTTP and JAXRPC
are now more equal in performance; JAXRPC performs
slightly better with the small arrays but considerably less
well for the larger array.
 The data records, for the array size 4, in this example
vary a little in size, most being about 900 bytes. Most
such records can fit within CORBA-IIOP’s 1024 response
packets; a few require IIOP continuation packets. Java’s
JRMP protocol has much greater problems with these
data. Rather than a single packet, JRMP uses several
packets for the array (most likely encoding each struct in
a separate continuation packet). Many more small
packets are necessary. The total data transferred are only
about 10% greater for JRMP than for IIOP. JRMP takes
its performance hit because of the much greater number
of packets that must be processed – with all the overheads
of switching between JVM and the underlying native
interface code that implements the actual TCP/IP
handlers.

 36

Technology Array size Packets

(10,000
invocations)

Total bytes
transferred
(10,000 invocations)

“Stabilized” time for
1000 invocations

4 28,264 13,161,991 1.9 CORBA
32 130,397 88,930,600 4.1
4 51,679 15,431,012 2.3 RMI-JRMP

32 293,246 99,885,950 5.8
4 41,071 18,857,000 13.4 RMI-HTTP

32 91,668 89,463,665 18.3
4 130,835 72,015,000 14.0 JAXRPC

32 427,584 437,890,943 78.5

Table 2 Performance of technologies for a server returning a small array of “structs”.

 Here, RMI-HTTP is actually more efficient than JRMP
when measured in terms of total data transfer and packets,
simply because it continues to buffer response data on the
server and send ~1500byte HTTP response packets. Of
course, RMI-HTTP still has a much higher processing
cost and so has slower response times.
 The costs of XML encoding of response data now
become more apparent and the performance of JAXRPC
lags. There are two problems. The main one is that with
rpc-encoded SOAP responses, every data field is sent
with identifying XML markup tags, and every tag
contains attributes with a data type. Consequently, the
total amount of data transferred increases, and
continuation packets are increasingly required. A
secondary problem, more apparent in the third example
data set, relates to the form of the SOAP message
structure. With arrays, and nested structures, the SOAP
XML representation can be quite lengthy. For example, a
response array is encoded as essentially an array
declaration, then as an array with data elements that are
essentially forward references to tagged elements that will
appear later in the XML stream, and finally as the
individual data elements. Every XML element is tagged
with its xsi:type=xsd:value attribute, adding
considerably to the text that must be transferred.
 A typical remote method invocation is going to return
an array of structs or a nested struct rather than a simple
data type. Since the SOAP XML encoding of such
structures is very lengthy, a WebService implementation
like JAXRPC necessarily returns much more data, and
uses many more packages. This extra data traffic can
offset the greater processing efficiency that is apparent
when the service returns only simple data types.

3.3 Nested structures

 The Data3 structures, with their nested
SimpleData, Address, and Order structures, are
typically about 1Kbytes. As expected, the CORBA
implementation works best for a server that returns single
Data3 elements, or arrays of Data3 elements. The
IIOP wire representation of the data uses a relatively
small number of continuation packets whereas the JRMP

encoding uses a large number of small packets. In a test
with a client making some 10,000 requests for single
Data3 elements and an additional 10,000 requests for
small arrays of Data3 elements, the CORBA
implementation completed 1000 simple requests in 1.3
seconds, and 1000 array requests in 2.6 seconds where
JRMP required 2.2 seconds and 4.2 seconds. For the total
test run, the CORBA implementation used some 76,000
packets and 38Mbyte of data transfers where JRMP used
149,000 packets for 48Mbyte of total data.
 HTTP-based protocols are naturally less efficient.
Here, RMI-HTTP performs better than JAXRPC for the
arrays but not for the single Data3 responses. The
comparable times for simple requests are 8.6 seconds, and
13.1 seconds for JAXRPC and RMI-HTTP. For the
arrays, the times are 39.6 seconds (JAXRPC) and 15.8
seconds (RMI-HTTP). The total data transfer for the
WebService solution was some 296Mbyte in 394,000
packets, while RMI-HTTP used 52Mbyte and 99,000
packets.
 The complexity of the SOAP-encoding is shown in
Figure 1 which illustrates the encoding of a response
containing just two Data3 elements in an array; each
containing customer details, an Address object, and an
Order array with a single Order element. As can be
seen from this example, the encoding and decoding
mechanisms will need a large amount of data buffering as
each record in the Data3 array is delivered in separate
typed parts, with all Address and Order elements
being defined prior to the first SimpleDate element.
 The extra costs of generating and transmitting the
lengthy XML data soon outweigh the more efficient
structure of the JAXRPC solution, making RMI-HTTP
the preferred technology for remote invocations that
return significant data. A simplified version of the client
server system was run for the JAXRPC and RMI-HTTP
solutions. This version involved the client making 2000
requests for Data3 arrays of differing sizes. The results
are as shown in Table 3.

 37

Technology Array size

1
Array size
2

Array size
4

Array size
8

Array size
16

time 1.3 1.36 1.41 1.5 1.66 RMI-HTTP
Total

bytes data
2,663,145 2,977,242 3,607,242 4,973,958 7,597,547

time 0.8 1.0 1.31 2.2 3.8 JAXRPC
Total

bytes data
7,106,609 9,860,018 15,401,886 27,087,637 48,912,368

Table3 WebService (JAXRPC) and RMI-HTTP performance for complex data structures.

 When the array of Data3 structures is of realistic size,
~8, the extra costs of XML encoding and the increased
volume of data, and consequently data packets,
completely offsets the more efficient processing of the
JAXRPC system.

4. Conclusion

 The majority of previously reported studies have used
benchmark examples that involve minimal data transfers.
Their performance comparisons use “ping” operations
that involve neither argument nor result data, or test the
response time for operations that return a built-in data
type such as a double or a short string. Such studies do
provide a measure of one extreme of performance, but the
results are not necessarily helpful to those needing to
select a technology for practical applications.
 Sun’s Java-RMI clearly has problems where response
data exceed about 300 bytes. Its use of numerous short
continuation packets suggest that it may be using a
strategy where it flushes the output stream and sends a
packet after serializing each individual object in any large
composite response. In an intranet, the resulting large
number of small packets may cause congestion; on the
Internet, there is greater chance of packet loss and hence
costly delays as retransmission is required. Although
Java-RMI is more efficient with regard to the handling of
individual packets than most CORBA implementations,
the fact that it may use four or five packets where
CORBA uses a single 1024-byte packet can lead to Java-
RMI showing a poorer overall performance than CORBA.
It should be noted that the Sun Java 1.4.2 CORBA
implementation used in this study was the poorest
performing of the CORBA implementations reviewed by
Demarey et al. [12] in their extremal “ping” test. JacORB
2.1 was more than twice as fast as Java 1.4.2, and
ORBacus 4.1.0 was five times as fast performing as well
as Java RMI in the extremal test. Contrary to most
previous reports, it is possible that a CORBA solution will
perform better in practice than a Java-RMI solution.
 The results in the comparison of JAXRPC
WebServices and RMI-HTTP tunnelling also show that
relative performance depends on the types of data
transferred. WebServices do not perform consistently
better than RMI-HTTP tunnelling. If response data take
the form of an array or sequence of structures, as would

be typical for a server that is retrieving data from a
database table, then the SOAP encoding scheme proves
inefficient. The volume of data, and consequently
number of packets transferred increases considerably. In
these circumstances, RMI-HTTP tunnelling can be faster
than a WebService solution.
 Developers of distributed object systems would in
general do better to prototype their proposed systems.
Prototypes that model the kinds of response data that will
be generated in the actual application can be used to test
the performance of the different technologies. Such tests
will provide a much better guide as to the appropriate
technology than will the results of extremal tests as
reported in the literature.

References:

 [1]. Java: Remote Method Invocation;
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/index.html

[2]. CORBA: Common Object Request Broker Architecture,
http://www.omg.org.

 [3] Java 1.4 CORBA implementation;
 http://java.sun.com/j2se/1.4.2/docs/guide/
corba/index.html

[4]. W3C Organizations Web Services definitions,
http://www.w3.org/2002/ws/

[5] Java API for XML-Based RPC (JAX-RPC);
http://java.sun.com/xml/jaxrpc/

[6] Web Services Description Language
http://www.w3.org/ TR/2003/WD-wsdl20-20031110/

[7] Tomcat server: http://jakarta.apache.org/tomcat/ index.html

[8] M.B. Juric, I. Rozman, and M. Hericko, Performance
Comparison of CORBA and RMI, Information and Software
Technology 42, 2000, 915-933.

[9] M.B. Juric, I. Rozman, and S. Nash, Java2 Distributed
Object Middleware Performance Analysis and Optimization,
ACM Sigplan Notices, 35, 2000, 31-40.

[10] M.B. Juric, I. Rozman, I., A.P. Stevens, M. Hericko, and S.
Nash, Java 2 Distributed Object Models Performance, Analysis,
Comparison, and Optimization, In Proceedings of 7th

 38

International Conference on Parallel and Distributed System,
IEEE, 2000, 239-246.

[11] A. Buble, L. Bulej, and P. Tuma, CORBA Benchmarking: A
Course with Hidden Obstacles, in Proceeding of the
International Parallel and Distributed Processing Symposium,
IEEE, 2003

[12] C. Demarey, G. Harbonnier, R. Rouvoy, and P. Merle,
Benchmarking the Round-Trip Latency of Various Java-Based
Middleware Platforms,
http://www.lifl.fr/~merle/benchmarking.pdf

[13] R. Elfwing, U. Paulsson, and L. Lundberg, Performance of
SOAP in Web Service Environment Compared to CORBA, In
Proceedings of the Ninth Asia-Pacific Software Engineering
Conference, IEEE, 2002, 84-93

[14] Davis, D., and Parashar, M., Latency Performance of SOAP
Implementations, In Proceedings of 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid,
IEEE, 2002, 377-382.

[15] N.A.B. Gray, Comparison of Web Services, Java-RMI, and
CORBA service implementations, in Proceedings of Fifth
Australasian Workshop on Software and System Architectures,
2004, 52-63.

[16] M.B. Juric, B. Kezmah, M. Hericko, I. Rozman, and I.
Vezocnik, Java RMI, RMI Tunneling, and WebServices:
Comparison and Performance Analysis, ACM Sigplan Notices,
39 (5), 2004, 58-65.

 39

<env:Body>
 response – forward reference to an array
 <ns0:getCustomersForSalesRepResponse
 env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <result href="#ID1"/>
 </ns0:getCustomersForSalesRepResponse>
 a definition of a two element array, forward references to elements
 <ns0:ArrayOfData3 id="ID1"
 env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="enc:Array" enc:arrayType="ns0:Data3[2]">
 <item href="#ID2"/>
 <item href="#ID3"/>
 </ns0:ArrayOfData3>
 a definition of a Data3 element – simple string fields, and forward
 references to contained substructures
 <ns0:Data3 id="ID2"
 env:encodingStyle="http://..." xsi:type="ns0:Data3">
 <_address href="#ID4"/>
 <_customer xsi:type="xsd:string">Customer C1</_customer>
 ...
 </ns0:Data3>
 definition of second Data3 element
 <ns0:Data3 id="ID3" env:encodingStyle="..." xsi:type="ns0:Data3">
 similar data defining two strings and two forward references
 to later tagged elements
 </ns0:Data3>
 definition of first Address structure
 <ns0:Address id="ID4"
 env:encodingStyle="http:..." xsi:type="ns0:Address">
 <_city xsi:type="xsd:string">Sydney</_city>
 ...
 </ns0:Address>
 definition of Order[] for first Data3 element – specifying its type
 as array with forward reference to single element
 <ns0:ArrayOfOrder id="ID5"
 env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="enc:Array" enc:arrayType="ns0:Order[1]">
 <item href="#ID8"/>
 </ns0:ArrayOfOrder>
 definition of Address structure for second Data3 element in result array
 <ns0:Address id="ID6"
 env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns0:Address">
 similar data defining second address record
 </ns0:Address>
 definition of Order[] for second Data3 element
 ...
 definition of first actual Order element – simple data fields and forward
 reference to SimpleDate structure
 <ns0:Order id="ID8"
 env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns0:Order">
 <_date href="#ID10"/>
 <_number xsi:type="xsd:int">1</_number>
 <_productcode xsi:type="xsd:string">Product#1234</_productcode>
 </ns0:Order>
 definition of next Order element
 ...
 definition of SimpleDate structure that completes the first Data3 element
 <ns0:SimpleDate id="ID10"
 env:encodingStyle="..." xsi:type="ns0:SimpleDate">
 <_day xsi:type="xsd:long">10</_day>
 ...
 </ns0:SimpleDate>
 definition of second SimpleDate structure
 <ns0:SimpleDate id="ID11" ...">
 similar data
 </ns0:SimpleDate>
</env:Body>

Figure 1 SOAP-XML encoding of simple array of structs.

	Publication Details
	University of Wollongong
	Research Online
	2005

	Performance of Java Middleware - Java RMI, JAXRPC, and CORBA
	N. A. B. Gray
	Performance of Java Middleware - Java RMI, JAXRPC, and CORBA
	Abstract
	Keywords
	Disciplines
	Publication Details

