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Abstract 

 
Developers of distributed Java systems can now 

choose among Java-RMI, CORBA, and Web-Service 
(JAXRPC) middleware technologies.  Performance is one 
factor that has to be considered in choosing the 
appropriate technology for a particular application.  The 
results presented in this paper show that the nature of 
response data has a greater impact on relative 
performance than has been allowed for in most previous 
studies.  Relative performances of the technologies as 
measured on simple requests and responses are not 
representative of the behaviour that can be expected in 
practical applications. 
 
1. Introduction 
 
 Distributed object systems, implemented in Java, can 
now be created using Java-RMI [1], CORBA [2, 3], and 
WebService (JAXRPC) [4, 5] technologies.  Java-RMI 
and CORBA allow the implementation of sophisticated 
server-side architectures, but in many cases only a simple 
stateless server is required.  WebServices can be adapted 
to support stateful services, but are primarily intended for 
stateless servers.  The discussions in this paper focus on 
such stateless servers.  A typical application would use 
such a server to interrogate or update a database.  The 
appropriate technology for a specific application will be 
determined by a variety of factors including ease of 
programming, stability and ease of deployment, and 
performance.  Published studies of empirical tests of 
performance can serve as a guide; this paper identifies a 
weakness, relating to network usage, that appears in many 
of these earlier studies. 
 The alternative technologies are similar with regard to 
ease of programming.  In all cases, developers start with 
an interface that declares the operations that define the 
service.  This interface will be a Java Remote interface 
for Java-RMI (or optionally for WebServices), or an IDL 
interface for CORBA, or a WSDL interface [6] for 
WebServices.  Automatic code generators create client-
side-stub classes, and corresponding server side 
“skeletons”.  The client-side code that must be written by 
the developer is essentially identical for all technologies, 
differing only in the few lines needed to obtain a proxy 
(stub) object for the server.  For the server side, the 

developer must define a class that either implements an 
interface or extends an auto-generated base-class.  This 
server implementation class contains the business logic; 
its coding is almost identical for all technologies.  For 
Java-RMI and CORBA, the developer must also create a 
simple driver program that instantiates an instance of the 
server class, binds it to the low-level object request broker 
runtime system, and publishes its identity.  In a JAXRPC 
WebService, a standard servlet-based framework 
performs the equivalent services. 
 The auto-generated stubs and skeletons hide the 
networking and data-marshalling aspects.  CORBA and 
Java RMI use communications protocols (IIOP and 
JRMP) that directly overlay the TCP/IP layer.  
WebServices, and optionally Java RMI, work with the 
HTTP protocol for requests and responses.  Inevitably, 
HTTP-based systems are less efficient than the binary 
protocols but they do have advantages when the clients 
and servers in a distributed system are separated by 
firewalls.  Firewalls are typically configured to admit 
HTTP traffic, but security administrators are loath to open 
up additional ports in firewalls or to install bridging 
applications in the firewall as needed to allow 
communication to arbitrary ports as used by CORBA and 
Java-RMI.  The choice of technology for a particular 
distributed application will to some degree depend on an 
assessment of the additional costs of HTTP-based 
mechanisms (both processing cost and increased network 
traffic) as compared to their advantages with regard to 
firewall configuration.  If an HTTP-based approach is 
adopted, the relative performances of different HTTP-
based implementations must be assessed. 
 Quite apart from considerations of firewalls, 
performance may need to be traded against other 
deployment and stability issues.  JAXRPC WebServices 
are deployed in WWW-servers such as Tomcat [7].  Such 
servers have persistent configuration data and will 
automatically restart all services after a system failure; 
systems administrators will be familiar with such servers 
and will not require training.  CORBA systems typically 
have a CORBA-daemon process that restarts actual 
servers when needed, and a CosNaming nameserver 
process (in Sun’s Java 1.4, these tasks are combined in the 
orbd process).  While a CORBA system is typically 
stable and fairly easy to administer, the technology is 
much less likely to be familiar to systems administrators.  
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Java-RMI has its rmiregistry program that fills a 
nameserver role; but this does not use persistent data 
defining its servers and cannot restart servers at a system-
wide restart.  Each server, or group of activatable servers, 
must be reregistered by launching the programs manually 
or via a script.  In many ways, Java-RMI is the least 
resilient of the technologies; its apparent advantage has 
always been seen as its higher performance. 
 With the choice of technology often being determined 
by a trade-off between performance and configuration/ 
deployment issues, developers need to have a clear 
understanding of the factors affecting the performance of 
the technologies.  The main contribution of this paper is 
to present data on comparative performance of these Java 
middleware technologies.  The work extends a number of 
similar previous studies, taking into account some details 
of the actual data transfers on the network that have been 
inadequately considered.  Section 2 of the paper 
summarizes previous studies; section 3 reports on the 
results from a series of tests, and section 4 presents 
concluding remarks. 
 
2. Earlier studies 
 
 Juric et al. [8, 9, 10] have published results for a series 
of studies comparing Java-RMI and CORBA.  In [8], they 
compared Java implementations of RMI and CORBA (the 
Visibroker implementation).  The performance measures 
were based on roundtrip times recorded for invocations of 
service operations that returned simple data types or 
strings; typically, the time for 200 invocations was 
measured.  For the simple data types, RMI performed 
significantly better than CORBA.  However, CORBA 
showed better performance when returning large strings; 
this was attributed in part to CORBA using 8-bit 
characters for strings where Java-RMI was expected to 
use 16-bit characters.  The later two papers in this series 
included measures of the original and optimized versions 
of RMI-IIOP. 
 Buble et al. [11] have identified problems with a 
number of such comparative studies.  In particular they 
note the need for a “warm-up” period prior to 
measurements of latency times for communications.  Each 
middleware system will involve activities such as priming 
of caches, and stabilization of adaptive resource allocation 
algorithms; further, Java “just in time” compilation cuts in 
at some point.  Illustrative results from Buble et al. show 
quite dramatic decreases in roundtrip invocation times 
after about 1000 invocations, and further decreases after 
longer warm-up times.  In their example study, some 
15,000 requests were needed before round-trip times 
stabilized and showed no further decreases.  The effect of 
warm-up is obviously important for servers that run for 
extended periods handling thousands of requests from 
various clients.  Its importance for clients is less clear.  
Most applications have clients that connect for relatively 
short periods of time and submit only small numbers of 
requests.  Comparisons based solely on round-trip times 

are probably best done using “warmed-up” clients, though 
actual timings in practical cases will be longer. 
 In their more recent study, Demarey et al. [12] have 
presented extensive results on benchmarking round-trip 
latency for various Java middleware platforms.  They 
have tested numerous Java CORBA implementations, 
Java RMI, Java XML systems, and less common systems 
such as OpenCCM and Fractal.  Their benchmark 
involves timing a void ping() operation on the 
server.  These measurements were made on “warmed up” 
systems and incorporated other improvements as 
suggested by Buble et al. [11].  In their study, the 
ORBacus 4.1 implementation of CORBA actually 
outperformed Java-RMI (by about 7%); though most of 
the other CORBA versions had considerably inferior 
performances (by up to 500%).  Their view was that a 
well implemented version of GIOP/IIOP could provide 
better performance than ad hoc protocols such as Java 
RMI's JRMP, and that WebServices platforms incurred 
high overheads that would likely preclude their use in 
cases where distributed systems would interact strongly. 
 The emergence of WebServices as a contender resulted 
in initial studies by Elfwing et al. [13] and by Davis and 
Parashar [14].  Elfwing et al. compared Web Services to 
CORBA, both in Java implementations, finding a 
degradation factor of up to 400 in performance.  This 
performance impact could be reduced by recoding the 
java.net libraries to work around problems with 
HTTP as used by the WebService.  Davis and Parashar 
compared several WebService systems (Java, Perl, .Net) 
with Java-RMI and CORBA.  They noted similar 
problems with the behavior of HTTP.  Their final 
conclusion was that Java-RMI was preferable to the Web 
Service systems available at the time of the study.  The 
poor performance of WebServices in these two studies 
was due in large part to their use of the HTTP-1.0 
protocol [15].  Every invocation of a remote operation 
required the costly construction and teardown of a new 
TCP/IP link; delays in the mechanism for closing each 
link caused the largest performance impacts.  The current 
JAXRPC implementations of WebServices use HTTP-1.1 
where the “keep-alive” protocol feature permits many 
requests to be made once a connection has been 
established. 
 In more recent work, Juric et al. [16] have compared 
Java-RMI, RMI-HTTP tunneling, and JAXRPC 
WebService implementations.  This study allows some 
measure of the impact of a firewall on a system's likely 
performance.  Their results showed that Java-RMI was 
more than 8 times faster than JAXRPC, which was again 
more than 3 times as fast as RMI-HTTP tunneling 
through a servlet based web server. 
 This study extends previous work in just two aspects.  
Firstly, an examination of recorded network traffic had 
shown anomalies in the relative network performance of 
Java-RMI and CORBA implementations when the size of 
a response message was changed.  Investigation of these 
anomalies has exposed a deficiency in Java-RMI's 
handling of larger responses; a deficiency that reduces the 
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generally observed performance advantage of Java-RMI.  
Secondly, examination of data traffic had also pointed to 
variations in the relative performances of JAXRPC and 
RMI-HTTP tunnelling.  Again, the relative performances 
of the technologies change with the nature of the data 
being returned. 
 These empirical observations motivated the 
performance study reported here.  The study examines 
firstly the simple case where the invoked server operation 
returns a character string of fixed size.  For these 
examples, the results are consistent with most previous 
studies in that Java RMI performs best, RMI-HTTP worst.  
However, such simple requests are atypical of actual 
remote services.  The rest of the study looks at 
invocations that return structured data (e.g. a small array 
of records such as might be obtained by a SQL select 
query on a datatable).  With these data, the relative 
performance of the different technologies changes and 
CORBA proves most effective and WebService 
(JAXRPC style) most costly.  The change in performance 
relates to the way that data are organized into packets for 
transmission on the network. 
 
3. Performance investigation 
 
 This study used the Sun Java 1.4.2 reference 
implementations throughout.  The tests were done on a 
system with a 100Mb switched Ethernet connecting a Dell 
Optiplex GX260 with a 2GHz CPU and 512Mbyte 
memory running Windows XP and a SunBlade 100 
workstation running Solaris (tests were run with each 
machine in both client and server roles, differences in the 
implementation of TCP/IP result in some minor 
performance differences when a client creates a 
connection to submit only a single request).  In their 
study, Demarey et al [12] ran both client and server 
processes on the same machine to avoid network 
perturbations; this configuration proved impractical for 
this study as a server system, such as the RMI-HTTP 
system with Tomcat/rmiregistry/server, ran at about 80% 
CPU utilization in some tests and simultaneous execution 
of the client on the same system would have just resulted 
in contention amongst processes.  Network traffic analysis 
was conducted using the Ethereal tool to capture packets.  
Tomcat 5 was used as the servlet application server for 
the JAXRPC system, and as both the class file server for 
Java-RMI and host for the servlet used to enable RMI-
HTTP tunneling.  The tests did not involve any actual 
firewall; RMI-HTTP tunneling was forced using available 
configuration options in Sun’s RMI implementation. 
 As Buble et al. [11] have noted, round-trip call times 
only become reliable after several thousand operations 
have been invoked so as to “warm-up” the systems.  A 
server will often run for days without being restarted, so 
its “warmed-up” performance is appropriate.  Clients do 
not typically make tens of thousands of requests.  After 
all, the prototypical WebService example is a “stock 
quote” service where the client makes a single request.  In 
this case, a WebService solution will perform best 

because it involves only a single connection to the server 
whereas both RMI and CORBA solutions will involve 
initial contact with a naming service to find the server 
(and RMI has the additional overhead of needing to 
contact a web-server to download client stub class files).  
Client performance is measured here with programs 
where the client connects and then runs a number of 
cycles, in each cycle measuring the time for 1000 
operation requests.  Buble et al. [11] note that the use of 
such aggregate times for many invocations loses a lot of 
information that could be used to characterize details of 
middleware performance, but these aggregates will 
suffice when looking for major differences in 
performance of different technologies.  In this study, it 
was observed that the time for the first 1000 invocations 
could be twice that of the eventual stabilized time, but in 
most cases the times had stabilized after about 3000 
invocations. 
 Demarey et al. [12] use a simple void ping() 
operation in their performance tests.  Juric et al. use a 
server with an interface such as the following: 
 
public interface IPerformanceTester  
 extends java.rmi.Remote { 
 int getInt() throws RemoteException; 
 ... 
 double getDouble() throws ...; 
 String getString()  
  throws RemoteException; 
} 
 
 For this study, three different interfaces were used.  
The first server defined a getString() operation; the 
effect of string length on performance was an issue.  (All 
java.lang.String data elements used in this study 
were in the default ISO-Latin font.)  Performance was 
tested with strings of varying sizes in the range 64-8192 
characters.  HTTP-systems, IIOP systems, and JRMP 
(Java-RMI native encoding) have different approaches to 
choosing packet size and how to handle continuation 
packets when a response is large.  The Java-RMI 
mechanisms (JRMP) appear to be the least effective; 
though they are not too troubled by regular sized 
structures such as strings. 
 The second server was defined via the following class 
and interface: 
 
public class Data2 implements 
 java.io.Serializable { 
 private long  _d1; 
 private String[] _d2; 
 private double[] _d3; 
 // accessor and mutator functions etc 
 ... 
} 
 
public interface Demo extends Remote { 
 public Data2[] f1(String str)  
  throws RemoteException; 
} 
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 In this case, the server implementations each generated 
an array of Data2 objects as the response to every f1() 
invocation.  Each Data2 had eight doubles and four 
strings whose lengths were varied “randomly” (using 
identical random sequences in every test run).  A typical 
Data2[] was about 900 byes but they could exceed 
1Kbyte. 
 The final server simulates a system that returns 
customer records retrieved from a database.  It is defined 
in terms of the following classes and interface: 
 
public class Address implements 
 java.io.Serializable { 
 private long _postcode; 
 private String _unit; 
 private String _street; 
 private String _city; 
 private String _state; 
 // accessor and mutator functions etc 
 ... 
} 
 
public class SimpleDate implements 
 java.io.Serializable { 
 private long _day; 
 private String _month; 
 private long _year; 
 // accessor and mutator functions etc 
 ... 
} 
 
public class Order implements 
 java.io.Serializable { 
 private SimpleDate _date; 
 private String  _productcode; 
 private int  _number; 
 // accessor and mutator functions etc 
 ... 
} 
 
public class Data3 implements 
 java.io.Serializable { 
 private String  _customer;
 private String  _salesrep;
 private Address _address; 
 private Order[] _orders; 
 // accessor and mutator functions etc 
 ... 
} 
public interface Demo3 extends Remote { 
 public Data3[] 
  getCustomersForSalesRep( 
   String salesrep)  
   throws RemoteException; 
 public Data3 getCustomerRecord( 
  String customer) 
   throws RemoteException; 
} 
 
 The intent of this example was to explore the impact of 
any inefficiency in the SOAP XML encoding of structs 

containing structs, or the encoding of arrays of such 
structures. 
 
3.1 Regular string data 
 
 Table 1 shows performance data for the 
getString() example with varying string sizes.  The 
data include stabilized time for 1000 invocations, total 
data traffic for 10,000 invocations, and total number of 
packets.  (The times shown are averages of the five lowest 
records.  There can be slight variations in numbers of 
packets and total bytes transferred due to things like 
occasional “ping” requests with JRMP or 
acknowledgements of groups of packets rather than single 
packets; these variations are < 0.1%.) 
 These results are consistent with previous studies.  
Java-RMI (JRMP) is the most efficient in terms of both 
elapsed times and total data transfers.  CORBA performs 
second best; its relative performance compared with RMI 
improves somewhat with larger strings.  JAXRPC 
performs less well, but is better than RMI-HTTP. 
 Each protocol has its own “wire” representation for the 
data.  All incur overheads that are significant for small 
sized responses such as the 64-character strings but 
become less marked for long strings as shown by the 
ratios of data on the wire to content data. 
 RMI’s JRMP protocol simply serializes the objects that 
are transferred.  In this simple case, the response data 
consist of a single string object that is sent with its class 
specification and the content character data.  If the data 
represent an array of objects (or a graph of objects) with 
duplicates (e.g. an array of “date” objects with duplicate 
string data for day and month names), the serialization 
mechanism encodes subsequent occurrences of an object 
by back-references rather than by duplicating the data; 
this typically results in some data compression.  Contrary 
to reports in previous studies, RMI’s JRMP does not 
necessarily utilize a 16-bit character representation; the 
ISO-Latin strings used by the test application are 
transferred as 8-bit characters on the wire.  The packets 
transferred for JRMP comprise those for exchanges with 
rmiregistry when finding the service, those needed 
to download the client stub class file, a few “ping” 
requests and responses, and the RMI “call” and 
“response” messages.  JRMP has a relatively small 
preferred packet size for response data; when the string 
length exceeds about 300 bytes, JRMP splits the response 
into a first packet and one (or more) continuation packets.  
As will be illustrated by the data in the following sections, 
it is this approach to handling continuations that can lead 
to RMI-JRMP performing less effectively than CORBA-
IIOP. 
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Technology Length of 

string 
returned 

Packets 
(10,000 
invocations) 

Total bytes 
transferred 
(10,000 invocations) 

“Stabilized” time for 
1000 invocations 

Ratio data sent / 
actual content data 

64 20,034 3,374,400 1.29 5.3 
512 20,034 7,854,420 1.50 1.5 

CORBA 

4096 80,032 48,434,269 2.86 1.2 
64 20,100 2,412,400 0.77 3.8 

512 40,130 8,404,000 1.19 1.6 
RMI-JRMP 

4096 100,129 48,345,000 2.04 1.2 
64 40,965 7,948,300 11.42 12.4 

512 40,968 12,438,400 11.85 2.4 
RMI-HTTP 

4096 61,198 49,390500 13.57 1.2 
64 100,816 19,868,900 4.84 31.0 

512 100,816 24,348,800 5.04 4.8 
JAXRPC 

4096 130,869 61,830,000 7.03 1.5 
 
Table 1 Performance of technologies for varying string length. 
 
 CORBA-IIOP generally performs best with regard to 
the number of packets transmitted.  The IIOP data traffic 
comprises a few initial exchanges with a CosNaming 
nameservice to locate the desired service, and then the 
CORBA request and response packages.  IIOP has a 1024 
byte packet limit; larger responses require additional 
continuation packets.  The IIOP overhead on a packet is 
higher than that for RMI-JRMP, but this extra overhead is 
offset by the reduction in the number of packets for large 
responses. 
 The RMI-HTTP has essentially the same data transfers 
as RMI-JRMP, but with the data being carried in HTTP 
text packets.  The HTTP exchanges involve separate 
header and content packets for both requests and 
responses.  Response data are buffered in the server and 
sent in large response and continuation packets (~1500 
bytes).  Apart from very short strings, the total data sent 
are only a little greater than for RMI-JRMP and actual 
packet use can be less because of the larger data and 
continuation response packets.  Processing costs on the 
server are high, and the response times here are the 
poorest.  (The system configuration used had a Tomcat 
WWW server hosting a servlet that acted as an 
intermediary to separate rmiregistry and server 
processes “behind the firewall”; every request and 
response involves additional inter-process 
communications between Tomcat and the application 
process.) 
 The JAXRPC solution is the most costly in terms of 
total data transfer and packets.  Each request requires a 
header and a content packet; each response has a HTTP 
header packet, a SOAP envelope packet, one or more 
content packets with the rpc-encoded SOAP response 
XML data, and a final terminator packet.  For this simple 
example, the extra data sent are those needed to encode 
the SOAP envelope; the actual excess data for the XML 
markup consist of a simple tag specifying the field name 
and type, xsd:string, of the response string.  These 
overheads are naturally most notable for short strings.  

Although sending more packets and more total data than 
the RMI-HTTP solution, JAXRPC exhibits better 
response times.  In the JAXRPC solution, the actual 
server object is instantiated in the same JVM in the same 
Tomcat process as the standard servlet that handles 
HTTP-communications and XML-encoding and 
decoding; there are no extra inter-process communication 
costs on the server side. 
 
3.2 An array of simple “structs” 
 
Table 2 shows performance data for the example where 
the server returns a small array of simple “structs” each 
containing integer, double, and string fields. 
 The relative performances of the different technologies 
now change quite radically.  CORBA-IIOP shows the best 
performance in terms of number of packets, total data 
transfer, and round-trip times.  RMI-HTTP and JAXRPC 
are now more equal in performance; JAXRPC performs 
slightly better with the small arrays but considerably less 
well for the larger array. 
 The data records, for the array size 4, in this example 
vary a little in size, most being about 900 bytes.  Most 
such records can fit within CORBA-IIOP’s 1024 response 
packets; a few require IIOP continuation packets.  Java’s 
JRMP protocol has much greater problems with these 
data.  Rather than a single packet, JRMP uses several 
packets for the array (most likely encoding each struct in 
a separate continuation packet).  Many more small 
packets are necessary.  The total data transferred are only 
about 10% greater for JRMP than for IIOP.  JRMP takes 
its performance hit because of the much greater number 
of packets that must be processed – with all the overheads 
of switching between JVM and the underlying native 
interface code that implements the actual TCP/IP 
handlers. 
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Technology Array size Packets 

(10,000 
invocations) 

Total bytes 
transferred 
(10,000 invocations) 

“Stabilized” time for 
1000 invocations 

4 28,264 13,161,991 1.9 CORBA 
32 130,397 88,930,600 4.1 
4 51,679 15,431,012 2.3 RMI-JRMP 

32 293,246 99,885,950 5.8 
4 41,071 18,857,000 13.4 RMI-HTTP 

32 91,668 89,463,665 18.3 
4 130,835 72,015,000 14.0 JAXRPC 

32 427,584 437,890,943 78.5 
 
Table 2 Performance of technologies for a server returning a small array of “structs”. 
 
 Here, RMI-HTTP is actually more efficient than JRMP 
when measured in terms of total data transfer and packets, 
simply because it continues to buffer response data on the 
server and send ~1500byte HTTP response packets.  Of 
course, RMI-HTTP still has a much higher processing 
cost and so has slower response times. 
 The costs of XML encoding of response data now 
become more apparent and the performance of JAXRPC 
lags.  There are two problems.  The main one is that with 
rpc-encoded SOAP responses, every data field is sent 
with identifying XML markup tags, and every tag 
contains attributes with a data type.  Consequently, the 
total amount of data transferred increases, and 
continuation packets are increasingly required.  A 
secondary problem, more apparent in the third example 
data set, relates to the form of the SOAP message 
structure.  With arrays, and nested structures, the SOAP 
XML representation can be quite lengthy.  For example, a 
response array is encoded as essentially an array 
declaration, then as an array with data elements that are 
essentially forward references to tagged elements that will 
appear later in the XML stream, and finally as the 
individual data elements.  Every XML element is tagged 
with its xsi:type=xsd:value attribute, adding 
considerably to the text that must be transferred. 
 A typical remote method invocation is going to return 
an array of structs or a nested struct rather than a simple 
data type.  Since the SOAP XML encoding of such 
structures is very lengthy, a WebService implementation 
like JAXRPC necessarily returns much more data, and 
uses many more packages.  This extra data traffic can 
offset the greater processing efficiency that is apparent 
when the service returns only simple data types. 
 
3.3 Nested structures 
 
 The Data3 structures, with their nested 
SimpleData, Address, and Order structures, are 
typically about 1Kbytes.  As expected, the CORBA 
implementation works best for a server that returns single 
Data3 elements, or arrays of Data3 elements.  The 
IIOP wire representation of the data uses a relatively 
small number of continuation packets whereas the JRMP 

encoding uses a large number of small packets.  In a test 
with a client making some 10,000 requests for single 
Data3 elements and an additional 10,000 requests for 
small arrays of Data3 elements, the CORBA 
implementation completed 1000 simple requests in 1.3 
seconds, and 1000 array requests in 2.6 seconds where 
JRMP required 2.2 seconds and 4.2 seconds.  For the total 
test run, the CORBA implementation used some 76,000 
packets and 38Mbyte of data transfers where JRMP used 
149,000 packets for 48Mbyte of total data. 
 HTTP-based protocols are naturally less efficient.  
Here, RMI-HTTP performs better than JAXRPC for the 
arrays but not for the single Data3 responses.  The 
comparable times for simple requests are 8.6 seconds, and 
13.1 seconds for JAXRPC and RMI-HTTP.  For the 
arrays, the times are 39.6 seconds (JAXRPC) and 15.8 
seconds (RMI-HTTP).  The total data transfer for the 
WebService solution was some 296Mbyte in 394,000 
packets, while RMI-HTTP used 52Mbyte and 99,000 
packets. 
 The complexity of the SOAP-encoding is shown in 
Figure 1 which illustrates the encoding of a response 
containing just two Data3 elements in an array; each 
containing customer details, an Address object, and an 
Order array with a single Order element.  As can be 
seen from this example, the encoding and decoding 
mechanisms will need a large amount of data buffering as 
each record in the Data3 array is delivered in separate 
typed parts, with all Address and Order elements 
being defined prior to the first SimpleDate element. 
 The extra costs of generating and transmitting the 
lengthy XML data soon outweigh the more efficient 
structure of the JAXRPC solution, making RMI-HTTP 
the preferred technology for remote invocations that 
return significant data.  A simplified version of the client 
server system was run for the JAXRPC and RMI-HTTP 
solutions.  This version involved the client making 2000 
requests for Data3 arrays of differing sizes.  The results 
are as shown in Table 3. 
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Technology  Array size 

1 
Array size 
2 

Array size 
4 

Array size 
8 

Array size 
16 

time 1.3 1.36 1.41 1.5 1.66 RMI-HTTP 
Total 

bytes data 
2,663,145 2,977,242 3,607,242 4,973,958 7,597,547 

time 0.8 1.0 1.31 2.2 3.8 JAXRPC 
Total 

bytes data 
7,106,609 9,860,018 15,401,886 27,087,637 48,912,368 

 
Table3 WebService (JAXRPC) and RMI-HTTP performance for complex data structures. 
 
 When the array of Data3 structures is of realistic size, 
~8, the extra costs of XML encoding and the increased 
volume of data, and consequently data packets, 
completely offsets the more efficient processing of the 
JAXRPC system. 
 
4. Conclusion 
 
 The majority of previously reported studies have used 
benchmark examples that involve minimal data transfers.  
Their performance comparisons use “ping” operations 
that involve neither argument nor result data, or test the 
response time for operations that return a built-in data 
type such as a double or a short string.  Such studies do 
provide a measure of one extreme of performance, but the 
results are not necessarily helpful to those needing to 
select a technology for practical applications. 
 Sun’s Java-RMI clearly has problems where response 
data exceed about 300 bytes.  Its use of numerous short 
continuation packets suggest that it may be using a 
strategy where it flushes the output stream and sends a 
packet after serializing each individual object in any large 
composite response.  In an intranet, the resulting large 
number of small packets may cause congestion; on the 
Internet, there is greater chance of packet loss and hence 
costly delays as retransmission is required.  Although 
Java-RMI is more efficient with regard to the handling of 
individual packets than most CORBA implementations, 
the fact that it may use four or five packets where 
CORBA uses a single 1024-byte packet can lead to Java-
RMI showing a poorer overall performance than CORBA.  
It should be noted that the Sun Java 1.4.2 CORBA 
implementation used in this study was the poorest 
performing of the CORBA implementations reviewed by 
Demarey et al. [12] in their extremal “ping” test.  JacORB 
2.1 was more than twice as fast as Java 1.4.2, and 
ORBacus 4.1.0 was five times as fast performing as well 
as Java RMI in the extremal test.  Contrary to most 
previous reports, it is possible that a CORBA solution will 
perform better in practice than a Java-RMI solution. 
 The results in the comparison of JAXRPC 
WebServices and RMI-HTTP tunnelling also show that 
relative performance depends on the types of data 
transferred.  WebServices do not perform consistently 
better than RMI-HTTP tunnelling.  If response data take 
the form of an array or sequence of structures, as would 

be typical for a server that is retrieving data from a 
database table, then the SOAP encoding scheme proves 
inefficient.  The volume of data, and consequently 
number of packets transferred increases considerably.  In 
these circumstances, RMI-HTTP tunnelling can be faster 
than a WebService solution. 
 Developers of distributed object systems would in 
general do better to prototype their proposed systems.  
Prototypes that model the kinds of response data that will 
be generated in the actual application can be used to test 
the performance of the different technologies.  Such tests 
will provide a much better guide as to the appropriate 
technology than will the results of extremal tests as 
reported in the literature. 
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<env:Body> 
 response – forward reference to an array 
 <ns0:getCustomersForSalesRepResponse  
  env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> 
  <result href="#ID1"/> 
 </ns0:getCustomersForSalesRepResponse> 
 a definition of a two element array, forward references to elements 
 <ns0:ArrayOfData3 id="ID1"  
  env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
  xsi:type="enc:Array" enc:arrayType="ns0:Data3[2]"> 
  <item href="#ID2"/> 
  <item href="#ID3"/> 
 </ns0:ArrayOfData3> 
 a definition of a Data3 element – simple string fields, and forward 
 references to contained substructures 
 <ns0:Data3 id="ID2"  
  env:encodingStyle="http://..."  xsi:type="ns0:Data3"> 
  <_address href="#ID4"/> 
  <_customer xsi:type="xsd:string">Customer C1</_customer> 
  ... 
 </ns0:Data3> 
 definition of second Data3 element 
 <ns0:Data3 id="ID3" env:encodingStyle="..."  xsi:type="ns0:Data3"> 
  similar data defining two strings and two forward references 
  to later tagged elements 
 </ns0:Data3> 
 definition of first Address structure 
 <ns0:Address id="ID4"  
  env:encodingStyle="http:..."  xsi:type="ns0:Address"> 
  <_city xsi:type="xsd:string">Sydney</_city> 
  ... 
 </ns0:Address> 
 definition of Order[] for first Data3 element – specifying its type 
 as array with forward reference to single element 
 <ns0:ArrayOfOrder id="ID5"  
  env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
  xsi:type="enc:Array" enc:arrayType="ns0:Order[1]"> 
  <item href="#ID8"/> 
 </ns0:ArrayOfOrder> 
 definition of Address structure for second Data3 element in result array 
 <ns0:Address id="ID6"  
  env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
  xsi:type="ns0:Address"> 
  similar data defining second address record 
 </ns0:Address> 
 definition of Order[] for second Data3 element 
 ... 
 definition of first actual Order element – simple data fields and forward 
 reference to SimpleDate structure 
 <ns0:Order id="ID8"  
  env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"  
  xsi:type="ns0:Order"> 
  <_date href="#ID10"/> 
  <_number xsi:type="xsd:int">1</_number> 
  <_productcode xsi:type="xsd:string">Product#1234</_productcode> 
 </ns0:Order> 
 definition of next Order element 
 ... 
 definition of SimpleDate structure that completes the first Data3 element 
 <ns0:SimpleDate id="ID10"  
  env:encodingStyle="..."  xsi:type="ns0:SimpleDate"> 
  <_day xsi:type="xsd:long">10</_day> 
  ... 
 </ns0:SimpleDate> 
 definition of second SimpleDate structure 
 <ns0:SimpleDate id="ID11" ..."> 
  similar data 
 </ns0:SimpleDate> 
</env:Body> 
 
Figure 1 SOAP-XML encoding of simple array of structs. 
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